Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1571524

ABSTRACT

Acute cardiac injury is prevalent in critical COVID-19 and associated with increased mortality. Its etiology remains debated, as initially presumed causes - myocarditis and cardiac necrosis - have proved uncommon. To elucidate the pathophysiology of COVID-19-associated cardiac injury, we conducted a prospective study of the first 69 consecutive COVID-19 decedents at CUIMC in New York City. Of 6 acute cardiac histopathologic features, presence of microthrombi was the most commonly detected among our cohort. We tested associations of cardiac microthrombi with biomarkers of inflammation, cardiac injury, and fibrinolysis and with in-hospital antiplatelet therapy, therapeutic anticoagulation, and corticosteroid treatment, while adjusting for multiple clinical factors, including COVID-19 therapies. Higher peak erythrocyte sedimentation rate and C-reactive protein were independently associated with increased odds of microthrombi, supporting an immunothrombotic etiology. Using single-nuclei RNA-sequencing analysis on 3 patients with and 4 patients without cardiac microthrombi, we discovered an enrichment of prothrombotic/antifibrinolytic, extracellular matrix remodeling, and immune-potentiating signaling among cardiac fibroblasts in microthrombi-positive, relative to microthrombi-negative, COVID-19 hearts. Non-COVID-19, nonfailing hearts were used as reference controls. Our study identifies a specific transcriptomic signature in cardiac fibroblasts as a salient feature of microthrombi-positive COVID-19 hearts. Our findings warrant further mechanistic study as cardiac fibroblasts may represent a potential therapeutic target for COVID-19-associated cardiac microthrombi.


Subject(s)
COVID-19 , Heart Injuries , RNA-Seq , SARS-CoV-2/metabolism , Thrombosis , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Female , Heart Injuries/genetics , Heart Injuries/metabolism , Heart Injuries/pathology , Humans , Male , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Prospective Studies , Thrombosis/genetics , Thrombosis/metabolism , Thrombosis/pathology
2.
Front Immunol ; 12: 748417, 2021.
Article in English | MEDLINE | ID: covidwho-1528820

ABSTRACT

Rationale: Myocardial injury associates significantly and independently with mortality in COVID-19 patients. However, the pathogenesis of myocardial injury in COVID-19 remains unclear, and cardiac involvement by SARS-CoV-2 presents a major challenge worldwide. Objective: This histological and immunohistochemical study sought to clarify the pathogenesis and propose a mechanism with pathways involved in COVID-19 myocardial injury. Methods and Results: Postmortem minimally invasive autopsies were performed in six patients who died from COVID-19, and the myocardium samples were compared to a control group (n=11). Histological analysis was performed using hematoxylin-eosin and toluidine blue staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: caspase-1, caspase-9, gasdermin-d, ICAM-1, IL-1ß, IL-4, IL-6, CD163, TNF-α, TGF-ß, MMP-9, type 1 and type 3 collagen. The samples were also assessed for apoptotic cells by TUNEL. Histological analysis showed severe pericardiocyte interstitial edema and higher mast cells counts per high-power field in all COVID-19 myocardium samples. The IHC analysis showed increased expression of caspase-1, ICAM-1, IL-1ß, IL-6, MMP-9, TNF-α, and other markers in the hearts of COVID-19 patients. Expression of caspase-9 did not differ from the controls, while gasdermin-d expression was less. The TUNEL assay was positive in all the COVID-19 samples supporting endothelial apoptosis. Conclusions: The pathogenesis of COVID-19 myocardial injury does not seem to relate to primary myocardiocyte involvement but to local inflammation with associated interstitial edema. We found heightened TGF-ß and interstitial collagen expression in COVID-affected hearts, a potential harbinger of chronic myocardial fibrosis. These results suggest a need for continued clinical surveillance of patients for myocardial dysfunction and arrythmias after recovery from the acute phase of COVID-19.


Subject(s)
COVID-19/metabolism , Heart Injuries/metabolism , SARS-CoV-2 , Aged , Apoptosis , Biopsy , COVID-19/pathology , Caspase 1/metabolism , Collagen/metabolism , Cytokines/metabolism , Female , Heart Injuries/pathology , Humans , Immunohistochemistry , Intercellular Adhesion Molecule-1/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Myocardium/metabolism , Myocardium/pathology
3.
PLoS One ; 16(8): e0256035, 2021.
Article in English | MEDLINE | ID: covidwho-1359100

ABSTRACT

BACKGROUND: Chloroquine was promoted as a COVID-19 therapeutic early in the pandemic. Most countries have since discontinued the use of chloroquine due to lack of evidence of any benefit and the risk of severe adverse events. The primary aim of this study was to examine if administering chloroquine during COVID-19 imposed an increased risk of ischemic heart injury or heart failure. METHODS: Medical records, laboratory findings, and electrocardiograms of patients with COVID-19 who were treated with 500 mg chloroquine phosphate daily and controls not treated with chloroquine were reviewed retrospectively. Controls were matched in age and severity of disease. RESULTS: We included 20 patients receiving chloroquine (500 mg twice daily) for an average of five days, and 40 controls. The groups were comparable regarding demographics and biochemical analyses including C-reactive protein, thrombocytes, and creatinine. There were no statistically significant differences in cardiac biomarkers or in electrocardiograms. Median troponin T was 10,8 ng/L in the study group and 17.9 ng/L in the control group, whereas median NT-proBNP was 399 ng/L in patients receiving chloroquine and 349 ng/L in the controls. CONCLUSIONS: We found no increased risk of ischemic heart injury or heart failure as a result of administering chloroquine. However, the use of chloroquine to treat COVID-19 outside of clinical trials is not recommended, considering the lack of evidence of its effectiveness, as well as the elevated risk of fatal arrythmias.


Subject(s)
Antiviral Agents/adverse effects , Biomarkers/analysis , Chloroquine/analogs & derivatives , Heart Failure/etiology , Heart Injuries/etiology , Aged , Antiviral Agents/therapeutic use , C-Reactive Protein/analysis , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Chloroquine/adverse effects , Chloroquine/therapeutic use , Creatinine/analysis , Electrocardiography , Female , Heart Failure/metabolism , Heart Injuries/metabolism , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/analysis , Peptide Fragments/analysis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Troponin T/analysis , COVID-19 Drug Treatment
4.
J Korean Med Sci ; 35(39): e349, 2020 Oct 12.
Article in English | MEDLINE | ID: covidwho-853913

ABSTRACT

BACKGROUNDS: The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has spread worldwide. Cardiac injury after SARS-CoV-2 infection is a major concern. The present study investigated impact of the biomarkers indicating cardiac injury in coronavirus disease 2019 (COVID-19) on patients' outcomes. METHODS: This study enrolled patients who were confirmed to have COVID-19 and admitted at a tertiary university referral hospital between February 19, 2020 and March 15, 2020. Cardiac injury was defined as an abnormality in one of the following result markers: 1) myocardial damage marker (creatine kinase-MB or troponin-I), 2) heart failure marker (N-terminal-pro B-type natriuretic peptide), and 3) electrical abnormality marker (electrocardiography). The relationship between each cardiac injury marker and mortality was evaluated. Survival analysis of mortality according to the scoring by numbers of cardiac injury markers was also performed. RESULTS: A total of 38 patients with COVID-19 were enrolled. Twenty-two patients (57.9%) had at least one of cardiac injury markers. The patients with cardiac injuries were older (69.6 ± 14.9 vs. 58.6 ± 13.9 years old, P = 0.026), and were more male (59.1% vs. 18.8%, P = 0.013). They showed lower initial oxygen saturation (92.8 vs. 97.1%, P = 0.002) and a trend toward higher mortality (27.3 vs. 6.3%, P = 0.099). The increased number of cardiac injury markers was significantly related to a higher incidence of in-hospital mortality which was also evidenced by Kaplan-Meier survival analysis (P = 0.008). CONCLUSION: The increased number of cardiac injury markers is related to in-hospital mortality in patients with COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Myocardium/metabolism , Pneumonia, Viral/diagnosis , Age Factors , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/virology , Creatine Kinase, MB Form/metabolism , Electrocardiography , Female , Heart Injuries/metabolism , Heart Injuries/pathology , Hospital Mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Myocardium/pathology , Natriuretic Peptide, Brain/metabolism , Pandemics , Peptide Fragments/metabolism , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , SARS-CoV-2 , Sex Factors , Tertiary Care Centers , Troponin I/metabolism
5.
Clin Chim Acta ; 510: 186-190, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-651781

ABSTRACT

OBJECTIVE: The aim of this study was to systematically and comprehensively evaluate the diagnostic and prognostic value of myocardial injury biomarkers in COVID-19 patients. METHODS: This is a retrospective cohort study of confirmed COVID-19 patients that were admitted to the Renmin Hospital of Wuhan University from January 30, 2020 to February 15, 2020. RESULTS: Receiver operating characteristic (ROC) curve analysis demonstrated that cTnI-ultra had the highest area under the curve (AUC) at 0.855, with a sensitivity of 67.3% and a specificity of 88.7% for the prediction of in-hospital mortality. Patients with higher troponin I-ultra (cTnI-ultra), creatinine kinase-myocardial band (CK-MB), and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were associated with higher mortality, compared to those who lower levels. The multivariable cox regression indicated that age (hazard ratio (HR) 3.450, 95% confidence interval (CI) 1.627-7.314, P = 0.001), coronary heart disease (HR 1.855, 95% CI 1.006-3.421; P = 0.048), elevated cTnI-ultra (HR 3.083, 95% CI 1.616-5.883, P = 0.001), elevated CK-MB (HR 2.907, 95% CI 1.233-6.854; P = 0.015), and elevated NT-proBNP (HR 5.776, 95% CI 2.272-14.682; P < 0.001) were associated with in-hospital mortality. CONCLUSIONS: cTnI-ultra might be the best predictor of in-hospital mortality among myocardial injury biomarkers. Elevated cTnI-ultra, CK-MB, and NT-proBNP were independent biomarkers of the mortality in COVID-19 patients.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Heart Injuries/complications , Heart Injuries/metabolism , Hospitalization , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Aged , Biomarkers/metabolism , COVID-19 , Cohort Studies , Coronavirus Infections/metabolism , Coronavirus Infections/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/mortality , ROC Curve , Retrospective Studies
6.
Biomed Res Int ; 2020: 7413673, 2020.
Article in English | MEDLINE | ID: covidwho-619953

ABSTRACT

Some patients with coronavirus disease 2019 (COVID-19) show abnormal changes in laboratory myocardial injury markers, suggesting that patients with myocardial injury have a higher mortality rate than those without myocardial injury. This article reviews the possible mechanism of myocardial injury in patients with COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects the patients with COVID-19 in aspects of direct infection of myocardial injury, specific binding to functional receptors on cardiomyocytes, and immune-mediated myocardial injury. During hospitalization, the monitoring of laboratory myocardial injury markers in patients of COVID-19 should be strengthened.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Coronavirus Infections/complications , Heart Injuries/blood , Heart Injuries/etiology , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Biomarkers/blood , Biomarkers/metabolism , COVID-19 , Coronavirus Infections/metabolism , Cytokines/blood , Cytokines/immunology , Heart Injuries/metabolism , Humans , Inflammation Mediators/blood , Inflammation Mediators/immunology , Models, Cardiovascular , Models, Immunological , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL